Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

fac-Trichloro(quinolin-8-ylimido- N, N^{\prime})-(triphenylphosphine-P)rhenium(V)

Yoshitaro Miyashita, Nagina Mahboob, Satoko Tsuboi, Yasunori Yamada, Kiyoshi Fujisawa and Ken-ichi Okamoto*

Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan Correspondence e-mail: okamoto@chem.tsukuba.ac.jp

Received 13 November 2000
Accepted 21 February 2001
The Re atom in $\left[\operatorname{Re}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2}\right) \mathrm{Cl}_{3}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$ is octahedrally coordinated by three Cl atoms in facial positions, two N atoms from 8 -imidoquinoline (imq) and one P atom from triphenylphosphine. The $\mathrm{Re}-\mathrm{N}$ (imido) distance $[1.760$ (9) and 1.772 (8) \AA] for imq is very short and implies double-bond character. The trans influence of the P atom is indicated. Intraand intermolecular $\pi-\pi$ interactions between the π-rings in the complex are also observed.

Comment

Since the first arylimido Re complex, $\left[\mathrm{ReCl}_{3}(\mathrm{NPh})\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{2}\right]$ ($\mathrm{Ph}=$ phenyl and $\mathrm{Et}=$ ethyl), was synthesized using aniline as the source of the imido-type ligand (Chatt \& Rowe, 1962), many analogous complexes have been reported (Refosco et al., 1998). In complexes with such monodentate arylimido ligands, the coordinated N atom is fully deprotonated and very short $\mathrm{Re}-\mathrm{N}$ (imido) distances are observed. On the other hand, Re complexes with the polydentate arylimido ligand are still rare. For example, complexes with 8 -imidoquinoline (imq) have not been obtained, but the complex with 8 -amidoquinoline, $\left[\mathrm{ReO}(\mathrm{Himq})_{2}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BPh}_{4}$, was formed by the reaction of $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with 8 -aminoquinoline $\left(\mathrm{H}_{2} \mathrm{imq}\right)$ (Ahmet et al., 1995). In this work, we report the structure of the Re complex with imq, $\left[\operatorname{Re}(i m q) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3}\right)\right]$, (I). In the asymmetric unit, there are two crystallographically independent complex molecules related by an approximate c-glide plane. A perspective drawing of one of the molecules is shown in Fig. 1, and selected bond distances and angles are listed in Table 1. The crystal structures consist of neutral molecules in which each central Re atom is octahedrally surrounded by an imq, a PPh_{3} and three Cl^{-}ligands. The Cl^{-}ligands coordinate facially to the Re atom and imq acts as a bidentate ligand.

The bond distances and angles in the crystallographically independent molecules, 1 and 2, are similar (Table 1). One of the $\mathrm{Re}-\mathrm{N}$ distances ($\mathrm{Re} m-\mathrm{N} m 2 ; m=1$ or 2 for molecule 1 and 2 , respectively) for imq is significantly shorter than the other. This is inconsistent with the fact that the $M-\mathrm{N}$ (amine)
and $M-\mathrm{N}$ (quinoline ring) distances for $\mathrm{H}_{2} \mathrm{imq}$ are similar [$M=\mathrm{Zn}$ (Kerr et al., 1981) or $M=\mathrm{Sn}$ (Hazell et al., 1997)], in which both $M-\mathrm{N}$ distances exhibit single-bond behaviour. The $\mathrm{Re}-\mathrm{N}$ (amido) distances for the Re complex with the partially deprotonated Himq, $\left[\mathrm{ReO}(\mathrm{Himq})_{2}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BPh}_{4}$, are 1.958 (6) and 2.028 (6) A (Ahmet et al., 1995). Similar distances were observed for Re complexes containing the

(I)
partially deprotonated amido N atoms of aminophenyl derivatives $[1.988$ (4) \AA (Ahmet et al., 1995) or 1.973 (7) \AA (Refosco et al., 1995)], and of 3- or 4-nitro-1,2-diaminobenzene [1.96 (2)-1.98 (3) Å; Bandoli et al., 2000]. On the other hand, short $\mathrm{Re}-\mathrm{N}$ (imido) distances were observed for the Re complexes containing the fully deprotonated imido N atoms of aminophenyl derivatives [1.757 (4) (Ahmet et al., 1995) or 1.780 (7) \AA (Refosco et al., 1995)]. Further, the Rem-Nm2-Cm26 angles are somewhat larger than the corresponding angles [117.4 (5) and 120.3 (5) ${ }^{\circ}$] of the complex with the amido-type Himq (Ahmet et al., 1995). Accordingly, the $\mathrm{Re}-\mathrm{N}$ (imido) bond for imq seems to have double-bond character and the $\mathrm{Re}-\mathrm{N}$ (quinoline ring) bond has a normal single-bond value; this suggests that the amino group in $\mathrm{H}_{2} \mathrm{imq}$ is fully deprotonated, indicating that the Re atom in this complex is pentavalent. In addition, the $\mathrm{Re} m-\mathrm{Cl} m 1$ distance occupying the trans position of the P atom is longer than those occupying the other two cis positions. This obviously indicates the trans influence of the P atom in PPh_{3}.

Figure 1
A view of molecule 1 with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Molecule 2 has the corresponding numbering scheme, in which the number after each atom is ' 2 ' or ' $2 n$ ' instead of ' 1 ' or ' $1 n$ ' as shown in molecule 1.

In the bond angles concerning the Re atom and imq, the $\mathrm{Cl} m 3-\mathrm{Re} m-\mathrm{N} m 2$ angle deviates significantly from the value of 180° (Table 1) for ideal octahedral geometry. This seems to depend on not only the acute bite angle and the Re N (imido) double bonding of imq, but also the interaction between the aromatic rings of PPh_{3} and imq. The $\mathrm{N} m 1-$ Rem- $\mathrm{P} m-\mathrm{C} m 13$ torsion angle is 16.8 (4) ${ }^{\circ}$ in molecule 1 and 16.4 (4) ${ }^{\circ}$ in molecule 2, and the closest $\mathrm{N} m 1 \cdots \mathrm{C} m 14$ distance is 3.15 (1) \AA in molecule 1 and 3.11 (1) \AA in molecule 2 . These facts suggest that the two aromatic π-rings, which are almost parallel, overlap each other, and intramolecular $\pi-\pi$ interactions exist between their π-rings. Furthermore, imq ligands in the two molecules are almost parallel and 3.29 (2) \AA apart. Similar distances were observed for the tetranuclear $\mathrm{Pd}^{\mathrm{II}}$ complexes with $2,2^{\prime}$-bipyridine, indicating $\pi-\pi$-stacking contacts (Yamada \& Okamoto, 1999; Yamada et al., 2000). Accordingly, these facts seem to indicate that intermolecular $\pi-\pi$ interactions also exist between imq ligands for two complex molecules in the unit cell.

Experimental

To a solution containing $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right](2.08 \mathrm{~g}, 2.50 \mathrm{mmol})$ (Johnson et al., 1967) in toluene (100 ml) was added a solution containing 8 -aminoquinoline $(0.518 \mathrm{~g}, 3.59 \mathrm{mmol})$ in toluene (38 ml). This mixture was stirred at 298 K for 1 d and the unreacted materials were filtered off. The dark-red solution was left standing at 298 K for two weeks and dark-red microcrystals appeared (yield 0.10 g). Found: C 47.04, H 3.30, N 4.00\%; calculated for $\left[\operatorname{Re}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2}\right) \mathrm{Cl}_{3}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$: C 46.53 , H 3.04, N 4.02%. Crystals suitable for X-ray analysis were obtained by recrystallization from acetonitrile at 298 K .

Crystal data

$\left[\mathrm{Re}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2}\right) \mathrm{Cl}_{3}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$
$M_{r}=697.02$
Monoclinic, $P 2_{1} / a$
$a=17.624$ (5) Å
$b=27.665$ (5) \AA
$c=10.428$ (3) \AA
$\beta=94.52(2)^{\circ}$ 。
$V=5068(2) \AA^{3}$
$Z=8$

Data collection

Rigaku AFC-7S diffractometer
ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.37, T_{\text {max }}=0.46$
12687 measured reflections
12409 independent reflections
7306 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$D_{x}=1.827 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=11.1-14.4^{\circ}$
$\mu=5.20 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Prismatic, brown
$0.38 \times 0.15 \times 0.15 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.035 \\
& \theta_{\max }=27.5^{\circ} \\
& h=0 \rightarrow 22 \\
& k=0 \rightarrow 35 \\
& l=-13 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \text { intensity decay: } 2.1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+0.04 P^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$R(F)=0.048$
$w R\left(F^{2}\right)=0.127$
$S=0.97$
11631 reflections
614 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Re} 1-\mathrm{Cl} 11$	$2.421(2)$	$\mathrm{Re} 2-\mathrm{Cl} 21$	$2.406(3)$
$\mathrm{Re} 1-\mathrm{Cl} 12$	$2.347(3)$	$\mathrm{Re} 2-\mathrm{Cl} 22$	$2.352(3)$
$\mathrm{Re} 1-\mathrm{Cl} 13$	$2.356(3)$	$\mathrm{Re} 2-\mathrm{Cl} 23$	$2.353(2)$
$\mathrm{Re} 1-\mathrm{P} 1$	$2.436(2)$	$\mathrm{Re} 2-\mathrm{P} 2$	$2.449(2)$
$\mathrm{Re} 1-\mathrm{N} 11$	$2.204(8)$	$\mathrm{Re} 2-\mathrm{N} 21$	$2.205(8)$
$\mathrm{Re} 1-\mathrm{N} 12$	$1.760(9)$	$\mathrm{Re} 2-\mathrm{N} 22$	$1.772(8)$
$\mathrm{N} 12-\mathrm{C} 126$	$1.39(1)$	$\mathrm{N} 22-\mathrm{C} 226$	$1.39(1)$
			$174.04(9)$
$\mathrm{Cl11-Re} 1-\mathrm{P} 1$	$172.21(8)$	$\mathrm{Cl} 21-\mathrm{Re} 2-\mathrm{P} 2$	$177.7(2)$
$\mathrm{Cl} 12-\mathrm{Re} 1-\mathrm{N} 11$	$176.9(2)$	$\mathrm{Cl} 22-\mathrm{Re} 2-\mathrm{N} 21$	$156.7(3)$
$\mathrm{Cl13-Re} 1-\mathrm{N} 12$	$155.9(3)$	$\mathrm{Cl} 23-\mathrm{Re} 2-\mathrm{N} 22$	$75.0(3)$
$\mathrm{N} 11-\mathrm{Re} 1-\mathrm{N} 12$	$74.7(4)$	$\mathrm{N} 21-\mathrm{Re} 2-\mathrm{N} 22$	$133.3(7)$
$\mathrm{Re} 1-\mathrm{N} 11-\mathrm{C} 119$	$133.0(7)$	$\mathrm{Re} 2-\mathrm{N} 21-\mathrm{C} 219$	$110.7(6)$
$\mathrm{Re} 1-\mathrm{N} 11-\mathrm{C} 127$	$111.4(7)$	$\mathrm{Re} 2-\mathrm{N} 21-\mathrm{C} 227$	$129.0(7)$
$\mathrm{Re} 1-\mathrm{N} 12-\mathrm{C} 126$	$129.6(8)$	$\mathrm{Re} 2-\mathrm{N} 22-\mathrm{C} 226$	

After checking their presence in the difference map, all H atoms were fixed geometrically and allowed to ride on their attached atoms $[\mathrm{C}-\mathrm{H}=\mathrm{N}-\mathrm{H}=0.95 \AA ; U=1.3 U(\mathrm{C}, \mathrm{N})]$. The major features in the final difference map are associated with the Re atoms.

Data collection: WinAFC (Rigaku Corporation, 1999); cell refinement: WinAFC; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

This work was supported by the Grant-in-Aid for Scientific Research Nos. 11640555 and 12023205 from the Ministry of Education, Science, Sports and Culture.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1586). Services for accessing these data are described at the back of the journal.

References

Ahmet, M. T., Coutinho, B., Dilworth, J. R., Miller, J. R., Parrott, S. J., Zheng, Y., Harman, M., Hursthouse, M. B. \& Malik, A. (1995). J. Chem. Soc. Dalton Trans. pp. 3041-3048.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bandoli, G., Dolmella, A., Gerber, T. I. A., Perils, J. \& Preez, J. G. H. (2000). Inorg. Chim. Acta, 303, 24-29.
Chatt, J. \& Rowe, G. J. (1962). J. Chem. Soc. pp. 4019-4033.
Hazell, A., Thong, K. F., Ouyang, J. \& Khoo, L. E. (1997). Acta Cryst. C53, 1226-1228.
Johnson, N. P., Lock, C. J. L. \& Wilkinson, G. (1967). Inorg. Synth. 9, 145-148.
Kerr, M. C., Preston, H. S., Ammon, H. L., Huheey, J. E. \& Stewart, J. M. (1981). J. Coord. Chem. 11, 111-115.

Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Refosco, F., Bolzati, C., Tisato, F. \& Bandoli, G. (1998). J. Chem. Soc. Dalton Trans. pp. 923-929.
Refosco, F., Tisato, F., Moresco, A. \& Bandoli, G. (1995). J. Chem. Soc. Dalton Trans. pp. 3475-3482.
Rigaku Corporation (1999). WinAFC. Version 1.0.2. Rigaku Corporation, 3-912 Akishima, Tokyo, Japan.
Yamada, Y., Fujisawa, K. \& Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 2067-2073.
Yamada, Y. \& Okamoto, K. (1999). Chem. Lett. pp. 315-316.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

